
Net Juggler GuideJérémie Allard, Loïk Leointre,Valérie Gouranton, Emmanuel Melinand Bruno Ra�nUniversité d'Orléans, LIFORapport No 2001-02

2

Net Juggler GuideJérémie Allard, Loïk LeointreValérie Gouranton, Emmanuel Melin and Bruno Ra�nLaboratoire d'Informatique Fondamentale d'Orléans (LIFO),Université d'Orléans, Orléans, FRANCEemail: gouranton|melin|raffin�lifo.univ-orleans.fr15th June 2001

2

Contents
1 Getting Started Guide 71.1 Hardware Requirements . 71.1.1 Graphis Cards . 71.1.2 Cluster Nodes . 71.1.3 Network . 71.2 Software Requirements . 81.2.1 Operating System . 81.2.2 VR Juggler . 81.2.3 Graphis API . 81.2.4 Communiation Library . 81.3 Installing VR Juggler . 81.4 Installing Net Juggler . 91.4.1 Deompression . 91.4.2 Pathing VR Juggler . 91.4.3 Compiling Net Juggler . 101.4.4 Setting Environment Variables . 101.4.5 Con�guration Files . 101.5 Compiling an Appliation . 111.5.1 Compilation by Hand . 111.5.2 Using a Make�le . 121.6 Running an Appliation . 121.6.1 MPI Binding . 132 Programmer's Guide 152.1 Introdution . 152.2 Cheklist . 152.3 Argument Parsing . 152.4 Make�le . 162.5 Cluster Con�guration Chunks . 162.5.1 The Host Parameter . 162.5.2 Input Proxies . 162.6 Use VR Juggler Input Devies . 172.7 The Time Input Devie . 172.7.1 TimeSystem . 172.7.2 Con�guration Chunks for TimeSystem . 183 Design Guide 193.1 General Design Choies . 193.1.1 Parallelization Paradigm . 193.1.2 Sharing Inputs . 203.1.3 Con�guration Management . 203.1.4 Communiations . 213

4 CONTENTS3.1.5 Starting the Appliation . 213.2 Net Juggler Arhiteture . 213.2.1 NetKernel . 233.2.2 NetCon�gManager . 243.2.3 NetStreamManager . 253.2.4 NetInputSream . 273.2.5 NetCon�gStream . 283.2.6 NetMessage . 303.2.7 NetAPI . 313.3 Sequene Diagrams . 323.3.1 Data Exhange . 323.3.2 Con�guration Chunk Handling . 334 Implementation Guide 374.1 VR Juggler modi�ations . 374.1.1 Derived Classes . 374.1.2 Chunk Type Cheking in the vj*Proxy Class . 374.1.3 VR Juggler 1.0 Related Issues . 374.1.4 Calling a Derived Class Construtor . 384.1.5 Swaplok Support . 394.2 Communiation Library . 404.2.1 MPI . 40A Genlok and Ative Stereo 41A.1 Introdution . 41A.2 Genloking Video Signals . 41A.2.1 Algorithm . 41A.2.2 Setting Time Parameters . 42A.2.3 Synhronization Barrier . 42A.2.4 Video Signal Aess . 42A.2.5 Vertial Retrae Waiting . 43A.3 Ative Stereo Support . 43

IntrodutionAll the way through this book we assume the reader has some experiene with VR Juggler. If not, refer toVR Juggler doumentation (www.vrjuggler.org).This book is also about lusters. We de�ne a luster as a set of omputing nodes (or hosts) onnetedby a network, where eah node supports a single system image, but the whole set of nodes does not. A seta linux PCs onneted by a ethernet network is a luster, but not a SGI Onyx.Net Juggler is a software laying on top of VR Juggler that turns a luster where eah node supports VRJuggler into a single VR Juggler image mahine. In other words, from the user's point of view it (almost)does not make any di�erene to run a VR Juggler appliation on a luster, a single PC or a SGI Onyx (fromthe operational point of view and not from the performane point of view).A very high-quality multi display projetion or ative stereo display requires the di�erent video signalsto be genloked (video signal synhronization). Net Juggler does not inlude any support for genlok. Ifrequired, use appropriate hardware and/or software for genloking the video signals.Chapter 1 is about installing Net Juggler and running a �rst appliation. Chapter 2 goes more in thedetails about how to write on�guration �les for a luster and how to make sure a VR Juggler appliationan run without troubles on a luster. The hapters 4 and 3 are for readers interested in the design andthe implementation of Net Juggler. The appendix A introdues the SoftGenLok library that implements asofware genlok and enables quad bu�er page �ipped stereo without requiring any spei� hardware.

5

6 CONTENTS

Chapter 1Getting Started Guide1.1 Hardware Requirements1.1.1 Graphis CardsNet Juggler does not require any spei� graphis ard. In partiular, beause Net Juggler implements asoftware swaplok (swap bu�er synhronization), graphis ards do not have to support swaplok. Most oftodays ommon 3D aelerated graphis ards will ensure satisfatory results.A very high-quality multi display projetion or ative stereo display requires the di�erent video signalsto be genloked (video signal synhronization). Net Juggler does not inlude any support for genlok. Ifrequired, use appropriate hardware and/or software for genloking the video signals. The SoftGenLoklibrary presented in appendix A provides a sofware genlok and enables quad bu�er page �ipped stereowithout any spei� hardware.1.1.2 Cluster NodesNet Juggler runs a opy of the VR Juggler appliation on eah node of the luster. Thus, if omputationpreision are not idential on eah node, data may beome inoherent. Using a luster with idential nodesguarantees that this problem does not our.1.1.3 NetworkAny kind of network an be used, provided that a ommuniation API supported by Net Juggler is available(urrently MPI) and that the performane is su�ient.Net Juggler uses synhronization barriers and data ommuniation instrutions. Barriers are mainly usedfor the swaplok. Beause only input events are sent over the network, bandwidth should not be a limitingfator.Communiation and synhronization time add extra lateny in the main loop and thus an a�et inter-ativity. We tested Net Juggler on a 4 node luster with� MPI over TCP/IP with an Ethernet network (10 Mbits/s),� MPI over TCP/IP with a Fast Ethernet network (100 Mbits/s),� MPI over GM with a Myrinet network (2 Gbits/s).Performane was aeptable with the Ethernet network. With the faster networks extra time indued byommuniations and synhronizations was typially a few hundreds of miroseonds. This is not signi�antompared to the tens of milliseonds required for a frame.7

8 CHAPTER 1. GETTING STARTED GUIDE1.2 Software Requirements1.2.1 Operating SystemNet Juggler should support any operating system that VR Juggler supports. This inlude IRIX, Linux,Windows, Free BSD and Solaris.At the moment we only tested Net Juggler with Linux and Windows. Please ontat us if you suessfullyompile and run Net Juggler on an other OS.1.2.2 VR JugglerNet Juggler uses VR Juggler to run a opy of the appliation on eah node. Thus, VR Juggler should beinstalled on eah node.Note that VR Juggler should be pathed (path inluded in the Net Juggler distribution) so that NetJuggler an be installed.1.2.3 Graphis APINet Juggler should support any graphis API that VR Juggler supports. This inludes OpenGL and Per-former.The present version supports OpenGL and Performer, but swaplok support is not yet available forPerformer.1.2.4 Communiation LibraryNet Juggler is designed so that it an easily be ported on top of various ommuniation libraries. Currentlyonly MPI is supported. Thus, MPI should be installed on your luster.MPI is a widely available library ported to almost any kind of network. MPICH is the most ommonMPI implementation (www-unix.ms.anl.gov/mpi/). In partiular MPICH provides a MPI implementationover TCP/IP.For spei� networks higher performane MPI implementations may be available. Here is a non exhaustivelist of high performane MPI implementations:� MPI/Gamma supports various megabit and gigabit ethernet ards(www.disi.unige.it/projet/gamma/).� For Myrinet networks:� MPI/gm (www.myri.om) is the vendor provided implementation and is ported on various oper-ating systems.� MPI/HPVM (www-sag.usd.edu/projets/hpvm.html) is a high performane implementation forWindows.� MPI/BIP (lhpa.univ-lyon1.fr) is a high performane implementation for Linux.1.3 Installing VR JugglerThis setion is a quik overview of the VR Juggler installation proedure.We assume you use VR Juggler 1.0.You need to download the VR Juggler soure distribution vrjuggler-1.0.0.tar.gz from www.vrjuggler.org.To install VR Juggler and test a sample appliation exeute the following ommands:% tar -xvf <vrjuggler-1.0.0.sr.tar.gz>% ln -s vrjuggler-1.0.0.sr vrjuggler% d vrjuggler

1.4. INSTALLING NET JUGGLER 9% path -u -p 2 -i ../netjuggler-distrib/path/vrjuggler-1.0.0.path # you anskip this to test VR Juggler, but it will be required to install Net Juggler.% autoheader% autoonf% ./onfigure% gmake% export VJ_BASE_DIR=/???/vrjuggler/instlinks # also put this line on a onfig file(like ~/.bashr)% d samples/ogl/ubes% gmake% ./ubes $VJ_BASE_DIR/share/Data/onfigFiles/simstandalone.onfigIf an error ours please refer to "VR Juggler Getting Started Guide".Now you are ready to install Net Juggler.1.4 Installing Net JugglerFor the moment Net Juggler is only distributed in a soure form that you should have downloaded(netjuggler-distrib.tar.gz).Until required modi�ations are made to VR Juggler distribution, Net Juggler an only be installed ona pathed version of VR Juggler. The path is distributed with Net Juggler. To apply this path you needa VR Juggler soure distribution.1.4.1 DeompressionOne you have downloaded Net Juggler, unpak it in the diretory you want to install it:% tar -xzvf <netjuggler-distrib.tar.gz>If your TAR version does not support unpaking gzipped tar �les, exeute instead:% gunzip <netjuggler-distrib.tar.gz>% tar -xvf <netjuggler-distrib.tar>After the deompression a new diretory named netjuggler-distrib should have been reated. Thisdiretory is referred by <netjuggler_base>.1.4.2 Pathing VR JugglerIn the <netjuggler_base>/path diretory you should �nd �les alled vrjuggler-distrib.path. Choosethe path orresponding to you VR Juggler distribution. If the orresponding �le does not exist pleaseupdate your Net Juggler distribution, or refer to hapter 4 for a desription of the modi�ations that mustbe applied to VR Juggler.Go to VR Juggler soure diretory and apply the path:% d <vrjuggler soure diretory>% path -u -p 2 -i <netjuggler_base/path/vrjuggler-distrib.path>Now you need to reompile VR Juggler:% make% make install

10 CHAPTER 1. GETTING STARTED GUIDE1.4.3 Compiling Net JugglerNet Juggler uses a simple ompilation proess that does not yet support ustomization.To ompile Net Juggler all you need to do is to invoke make in the Net Juggler diretory:% d <netjuggler_base>% makeThis should reate the following �les:� libNetJuggler.a: main Net Juggler library� libNetJuggler_MPI.a: MPI binding for Net JugglerFew test programs are also ompiled:� netapi_mpi_tests : Test MPI performanes. This is a standard MPI program� net_kernel_tests : Simple Net Juggler test. See below for exeuting Net Juggler appliations� net_input_tests : Similar to net_kernel_tests, but using a keyboard input alled "NetKeyboard"(delared in luster.netkey.on�g).1.4.4 Setting Environment VariablesNet Juggler requires the NJ_BASE_DIR environment variable to be instantiated to Net Juggler base diretory<netjuggler_base>.You need to add the following line in your �/.bashr �le for a personal installation, or in a globalon�guration �le like /et/profile if you have root aess and want Net Juggler to be available to all users:% NJ_BASE_DIR=<netjuggler_base> ; export NJ_BASE_DIRNet Juggler inludes a little utility alled juggler-onfig used to easily ompile VR Juggler appliations.To ease aess to this ommand add a symboli link to juggler-onfig from a diretory that is in yourPATH :% ln -s <netjuggler_base>/juggler-onfig <bin_diretory>If you want to ativate Net Juggler by default, you an de�ne USE_NETJUGGLER environment variable to yesnear the line de�ning NJ_BASE_DIR:% USE_NETJUGGLER=yes ; export USE_NETJUGGLER1.4.5 Con�guration FilesVR Juggler uses on�guration �les to ontrol input and output devies like trakers, displays.... This is thesame on a Net Juggler luster, but the �les should inlude extra informations like the name of the node (orhost) the traker is onneted to.Updating on�guration �les for your luster is detailed in hapter 2. For running your �rst VR Jugglerappliation on a luster, the distribution inludes two sets of on�guration �les (almost) ready to use (seenetjuggler_base/Data/onfig). These �les are written for a luster with 4 nodes named p1, p2, p3and p4:� luster.*.onfig:� luster.base.onfig: Basi on�guration. Must be inluded. Set the time devie on p1.� luster.netonnet.onfig: Con�gure p1 to open the TCP port 4451 for the dynami reon-�guration of the luster with VjControl.

1.5. COMPILING AN APPLICATION 11� luster.displays.onfig: Set the views displayed on eah node of the luster:� p1: front display� p2: right display,� p3: left display,� p4: �oor display.� luster.wand.mixin.onfig: Set a simulated wand using p1's keyboard.� sim.*.onfig: Correspond to the VR Juggler �les for running an appliation in simulator mode. Allinputs are on the �rst node of the luster and all nodes display the same view.To have a fully funtional on�guration, you must at least have a keyboard and a display for p1 Youan of ourse ustomize the on�guration �les for an other luster on�guration (see hapter 2).We provide a small utility program so you do not have to go through all on�guration �les to updatehost names aording to your luster on�guration. Just �ll out the hosts.txt �le in netjuggler_basediretory:�p1�=host1�p2�=host2�p3�=host3�p4�=host4where host# is the host name of a node in the luster, and run the ommand (in the Net Jugglerdiretory):% make onfigFor nodes p3 and p4, you an put unused host names if you do not have the orresponding nodes onyour luster.If you want to test Net Juggler with only one mahine, give the �rst host the mahine's name and theseond host the same name but with :2 appended:�p1�=host1�p2�=host1:2�p3�=toto�p4�=toto1.5 Compiling an AppliationThe following setion deals with ompiling a VR Juggler appliation by hand or with a make�le.Ideally any VR Juggler appliation should ompile and run on a Net Juggler luster without any modi-�ation. In fat reality is a little bit di�erent and a few things need to be done. Refer to hapter 2 for moredetails.In this setion we detail how to ompile the "ubes" sample appliation of VR Juggler that we ported asan example (<netjuggler_base>/samples/vrjuggler/ubes).1.5.1 Compilation by HandIf your appliation only ontains few soure �les you an build it by diretly invoking the ompiler. Allyou need to do is to use the juggler-onfig tool that returns the ompilation arguments needed for NetJuggler. Possible options are:Usage: juggler-onfig [OPTIONS℄ [LIBRARIES℄Options:[--version℄

12 CHAPTER 1. GETTING STARTED GUIDE[--libs℄[--flags℄Libraries:vrjugglernetjugglermpiTo ompile your appliation, use the following ommand:% g -o <app_exe> <soure_files> `juggler-onfig --libs \--flags<juggler_options>` <app_options>where:<app_exe> is the exeutable �le name<soure_files> are the appliation soure �les<juggler_options> are the Net/VR Juggler options<app_options> are the appliation spei� options and librariesIf the environment variable USE_NETJUGGLER is set to yes, juggler-onfigdefault options are netjugglermpi, vrjuggler otherwise.For example, if you want to ompile the "ubes" sample appliation using Net Juggler with MPI use:% g -o ubes ubes.pp ubesApp.pp `juggler-onfig --libs \--flags netjuggler mpi`Note that juggler-onfig works exatly like gtk-onfig from GTK+.1.5.2 Using a Make�leHave a look to <netjuggler_base>/samples/vrjuggler/ubes for a sample Make�le for Net Juggler.All you need to do is to use juggler-onfig to de�ne ompiler �ags and linker options. This an bedone by adding the following lines to your Make�le:CFLAGS= $(CFLAGS) `juggler-onfig --flags netjuggler`LIBS=$(LIBS) `juggler-onfig --libs netjuggler`Note that to easily swith between ompiling for VR Juggler or for Net Juggler, you have two possibilities:� Use juggler-onfig with the vrjuggler or netjuggler option.� Set the variable environment USE_NETJUGGLER to yes or no and do not speify any netjuggler orvrjuggler option to juggler-onfig.1.6 Running an AppliationThis setion is about launhing a VR Juggler appliation on your luster. It depends on the ommuniationlibrary used by Net Juggler. Currently Net Juggler only supports MPI (see hapter 2 for more details).

1.6. RUNNING AN APPLICATION 131.6.1 MPI BindingA Net Juggler appliation is launhed with the standard MPI ommand. Generally MPI implementationsinlude a mpirun sript. The arguments of the mpirun sript must inlude the VR Juggler appliation youwant to exeute, how many proesses you want to exeute, generally one per node, and the VR Juggleron�guration �les updated for your luster.For example, mpirun is used to launh the "ubes" appliation on 4 nodes using the luster on�guration�les (see setion 1.4.5) as follow:d <netjuggler_base>samples/vrjuggler/ubesmpirun -np 4 ubes \$NJ_BASE_DIR/Data/onfig/luter.base.onfig \$NJ_BASE_DIR/Data/onfig/luster.netonnet.onfig \$NJ_BASE_DIR/Data/onfig/luter.displays.onfig \$NJ_BASE_DIR/Data/onfig/luter.wand.mixin.onfigTo run the appliation in simulator mode, hange the on�guration �les:d <netjuggler_base>samples/vrjuggler/ubes \mpirun -np 4 ubes \$NJ_BASE_DIR/Data/onfig/simstandalone.onfigHere are some essential mpirun arguments :-np <num>: Number of proess to launh.-mahinefile <file>: Con�guration �le ontaining the luster node list.-noloal : Do not launh a proess on the loal host.

14 CHAPTER 1. GETTING STARTED GUIDE

Chapter 2Programmer's Guide2.1 IntrodutionThis hapter desribes how to modify a VR Juggler appliation so that it an run on a luster with NetJuggler, and how to update the on�guration �les.Net Juggler is a software harness for running VR Juggler appliations on a luster. Ideally, a VR Jugglerappliation should run without any modi�ation on a Net Juggler luster. For the moment, Net Juggler isnot yet fully integrated into VR Juggler and minor modi�ations are required for a VR Juggler appliationto be runable.Net Juggler luster on�guration is ahieved by using the same on�guration �les than VR Juggler. These�les are enrihed with extra information needed by Net Juggler (e.g. the name of the node the traker isonneted to).2.2 CheklistThis part is brief heklist of the modi�ations required to run a VR Juggler appliation on a Net Jugglerluster. More detailed informations are provided in the next setions.To run a VR Juggler appliation on a Net Juggler luster it is neessary to:1. Call vjKernel::parseArg at the beginning of the main proedure2. Modify the Make�le to use juggler-onfig (see hapter 1).3. Chek that the appliation retrieves all input data through VR Juggler input devies. If not, modifythe appliation.4. Modify the on�guration �les to inlude host informations.2.3 Argument ParsingIn the main proedure, a all to vjKernel::parseArg must be inserted just after the kernel is reated:vjKernel* kernel=vjKernel::instane(); // this line should already// be present in mainkernel->parseArg(&arg,&argv); // THIS LINE MUST BE ADDEDNote that arg and argv must not be used before parseArg all.15

16 CHAPTER 2. PROGRAMMER'S GUIDE2.4 Make�leThe Make�le has to be modi�ed so that the Net Juggler libraries be linked to the appliation at ompiletime (see hapter 1).2.5 Cluster Con�guration ChunksThe VR Juggler on�guration system is based on a set of �les ontaining "hunks". These hunks desribethe on�guration of eah system omponent. To run a VR Juggler appliation on a Net Juggler luster, theon�guration �les should be modi�ed (diretly editing the �les or using VjControl) to inlude luster relatedextra informations.2.5.1 The Host ParameterEah on�guration hunk must inlude a Host parameter. The Host spei�es the luster node the hunk isapplied to.A Host parameter an take one of the following values:� "" or "All" : hunk applied to eah host of the luster� "hostname" : hunk applied only to the host spei�edFor example a User hunk that onerns eah host and a FrontDisplay hunk that onerns only thehost grappe7 should be de�ned as:JugglerUserName "User"Host { "All" }...endDisplaySurfaeName "FrontDisplay"Host { "grappe7" }...endEndThe following general rules an be observed to de�ne the Host parameters:� A display surfae applies to one host only.� An input devie applies to one host only.� An input proxy is a speial ase treated in the next setion.� All other hunks apply to all hosts.2.5.2 Input ProxiesA VR Juggler appliation never diretly aesses an input devie but uses an intermediate proxy devie.Net Juggler extends this approah to de�ne a new lass of input proxies, the "shared" proxies. On aluster, an input devie, a wand for example, is onneted to one node, but the data must be broadasted toall other nodes. When a "shared" proxy is enountered, Net Juggler knows that the data retrieved from thatproxy must be broadasted to eah node of the luster. This solution is elegant as it requires no modi�ationof the appliation ode.

2.6. USE VR JUGGLER INPUT DEVICES 17A shared proxy hunk is similar to a standard proxy hunk exept that the hunk name is pre�xed byShared.The Host parameter of a shared proxy hunk is interpreted as the soure of the shared data. Thus, theHost parameter must be the same as the Host parameter of the assoiated input devie.For example, the following hunks de�ne a shared proxy for the TimeSystem input devie running on p1(see setion 2.7.2 for more details about TimeSystem).vjinludedesfileName "timesystem.des"endTimeSystemName "TimeDevie"Host { "p1" }endSharedAnaProxyName "Time"Host { "p1" }devie { "TimeDevie" }unit { "0" }endEndNote that standard input proxies an be useful on a luster. For example, a keyboard an be assoiatedto a node only to hange the viewport of the display assoiated with that node. In that ase, the keyboardproxy should not be shared.2.6 Use VR Juggler Input DeviesNet Juggler runs a opy of the VR Juggler appliation on eah node of the luster. To keep data oherenybetween all appliation instanes, Net Juggler interepts data inputs and broadast them to eah node. NetJuggler interepts only the data the appliation retrieves through VR Juggler input devie. A VR jugglerappliation ould diretly get a random number or a time bypassing VR Juggler. In this ase, Net Juggleris not able to guarantee data ohereny. So, you should hek that your VR Juggler appliation retrieves allits input data from VR Juggler input devies. If not, you must modify the appliation to use VR Jugglerinput devies. You an implement your own VR Juggler input devies or use the ones provided with the VRJuggler or Net Juggler distributions.The Net Juggler distribution inludes a time input devie desribed in the following setion. It an beused has a pattern to develop other input devies, a random generator input devie for example. Please referto VR Juggler doumentation for more informations about input devies.2.7 The Time Input DevieThe time input devie inluded in the Net Juggler distribution is an analog input that returns the amountof time taken by the last frame. It an be used to retrieve a time data for physial simulations or otheromputations that modify appliation states based on a time delay.2.7.1 TimeSystemThe TimeSystem input is implemented as a VR Juggler analog input devie. Use a vjAnalogInterfae toaess it:vjAnalogInterfae mTime; // put this in your appliation lassIn the vjApp::init(), mTime must be initialized and named:

18 CHAPTER 2. PROGRAMMER'S GUIDEmTime.init("Time"); // put this in your appliation init() methodWhen you need to obtain the time taken by the last frame, usually in the preFrame method, you have touse: float dtime=mTime->getData(); // dtime ontains the last frame duration// in seonds (lamped to 1)Then use dtime in your ode to update the appliation states.2.7.2 Con�guration Chunks for TimeSystemTimeSystem is a standard VR Juggler analog input devie that requires on�guration hunks that must beinluded in a on�guration �le.A hunk de�nes the TimeSystem devie and an other hunk the assoiated proxy. For a VR Jugglersystem, the hunks are:vjinludedesfileName "timesystem.des"endTimeSystemName "TimeDevie"endAnaProxyName "Time"devie { "TimeDevie" }unit { "0" }endEndOne modi�ed for a Net Juggler system, we obtain the hunks presented in setion 2.5.2.

Chapter 3Design GuideNet Juggler was developed with the following goals:� No modi�ation should be required to run a VR juggler appliation on a luster.� Launhing the appliation should not require the user to aess eah node.� Con�guring the luster should not require the user to aess eah node.� All VR Juggler features, like run-time reon�guration or performane data olletion, should be avail-able on a luster.� Net Juggler should be as transparent as possible suh that any new feature that ould be added infuture VR Juggler releases, should be also available on a luster, ideally with no porting e�ort.� The required modi�ations to VR Juggler ode should be minimal.� Net Juggler organization should respet the VR Juggler organization (miro-kernel arhiteture).� Net Juggler should ensure high performane exeutions. In partiular, ommuniation and synhro-nization osts should be minimized.� Net Juggler should inlude a software swaplok support for the lusters that do not have hardwareswaplok support.� No luster node should have a master position for better salability.We present in this hapter how Net Juggler was designed to meet these goals.3.1 General Design Choies3.1.1 Parallelization ParadigmTo run a VR Juggler appliation on a luster we adopted a simple parallelization paradigm: eah node ofthe luster runs its own opy of the appliation with its own loal parameters, like the viewport for instane.Obviously, input devies are not dupliated. Thus to ensure data onsisteny aross the di�erent opies,input events are broadasted to eah node. This parallelization an easily be hidden fom the user, it issalable and ensures that the amount of data to ommuniate is small. The main drawbak is that it anlead to redundant omputations. Future works will address this problem.19

20 CHAPTER 3. DESIGN GUIDE3.1.2 Sharing InputsThe user of a VR appliation needs di�erent input devies to interat in real-time with the appliation, likegloves, keyboards, trakers... VR Juggler ollets these inputs and forward them to the appliation. Theapproah is the same with Net Juggler exept that a given input devie is onneted to one given node only.Consequently, Net Juggler must get the inputs from the devie, and broadast the olleted data to eahnode of the luster.Proxies and InputsLet us explain more spei�ally how Net Juggler gets the input data and how it broadasts them.VR Juggler manages eah input through a driver (vjInput lass). This driver is onneted to a proxy(vjProxy lass) that forwards the data to the appliation.We ould use spei� drivers to transmit data. We would assoiate a server input driver to the node thedevie is onneted to, and a lient input driver for the other nodes. The main advantage is that it is veryeasy to add new drivers in VR Juggler. We just need to instantiate a lient lass and a server lass for eahkind of input driver. The drawbak is that every single devie driver would require a lient and a serverinput driver. This may be pretty laborious.We did not adopt this solution, but we translated it at the proxy level. Instead of having lient andserver input drivers, we have lient and server proxies. Proxies provide an abstration of input drivers andthus their number is limited and should not inrease signi�antly in the future. This approah only requiresto modify the vjProxy lass in VR Juggler so that we an derive it. Also note that a VR Juggler proxystores a pointer to its input driver. It is used to detet if the driver is onneted or not. For a server proxythis is the same. For a lient proxy the pointer is set to null.3.1.3 Con�guration ManagementSystem Con�gurationThe system on�guration is very important in VR Juggler. It an be ontrolled by �les given when startingthe program, or by requests sent during the exeution from VjControl. The system on�guration is seen likea list of hunks, eah hunk having some informations about a part of the system (display, input,...).One goal of Net Juggler is to use only one global on�guration for the whole luster, allowing at thesame time to have nodes with di�erent on�gurations (di�erent viewports for example). We add a "Host"parameter to a on�guration hunk that an be equal to "All" or to a node name. It points out that theonsidered hunk applies to all nodes of the luster or only to the spei�ed node.The hunk assoiated to eah ouple of a lient/server proxy is renamed by taking the regular VR Jugglerproxy name pre�xed with "Shared". The parameter "Host" has then a di�erent semantis: it points outthe node that runs the server proxy, all the other nodes having a lient proxy.Proessing Con�guration ChunksCon�guration hunks are stored in a data base on eah node before being transmitted to VR Juggler. Wewant eah node to know the whole luster on�guration to avoid to entralize on�guration informations onone spei� node or to have to handle sattered hunks when the user asks for the on�guration.Eah node has a on�guration �lter to selet the hunks that must be applied loally.Dynami Con�gurationTo dynamially on�gure VR Juggler, VjControl onnets to VR Juggler through a TCP onnetion andsends on�guration requests to vjConfigManager.We extend this onept to Net Juggler. VjControl an onnet to any node of the luster runninga on�guration server. Con�guration requests are interepted and broadasted to all nodes before beingstored in eah loal data base and forwarded to the on�guration �lter.

3.2. NET JUGGLER ARCHITECTURE 21Note that we keep two open port per node. The "old" VR Juggler port opened by the environmentmanager and the Net Juggler port. The global luster on�guration an be obtained and modi�ed byonneting VjControl to the Net Juggler port. Through the VR Juggler port only loal node informationsan be retrieved. It is onvenient for debugging purpose or to retrieve performane data. However thisonnetion should not be used to modify the node on�guration.3.1.4 CommuniationsCommuniations must take plae to broadast on�guration requests and input data. For performanepurpose these data transfers must be arefully managed.StreamsWe use and extend the lassial stream paradigm to represent data ommuniation between nodes. Thereis one stream by server proxy and by on�guration server. A stream is assoiated to a spei� node soureand an have several destination nodes. Eah stream is identi�ed by a unique id number and an bereated, deleted or modi�ed at run-time. The abstration level provided by the streams hides the atualdata movements that take plae at a lower level.MessagesData ommuniations take plae only one per frame. When a node writes into a stream, it builds a messageontaining the data and appends it to the bu�er of pending messages. When the ommuniation atuallytakes plae eah node broadasts its bu�er to eah other node. This olletive ommuniation operation isusually alled an allgather.Con�guration events an take plae at any time and ause bu�ers to have an unpreditable size. Theadopted semantis for the allgather requires all nodes to know the size of the messages they will reeive.When the allgather is exeuted, it sends input data and a speial message indiating the size of the reon-�guration data. If this size is di�erent from 0 a seond ommuniation step is triggered to send the list ofthe reon�guration messages.Network APITo ease portage to di�erent ommuniation libraries, Net Juggler has a ommuniation interfae hiding thelibrary used.3.1.5 Starting the AppliationVR Juggler triggers the following sequene of ations when launhed: the on�g �les are loaded, next thekernel starts and only after the appliation is assoiated to the kernel. Though not really used, it shouldalso be possible to hange the appliation at run-time.Net Juggler reuses the same sequene of ations. To ensure that the appliation is started on eah nodewith the same ontext (same on�guration and same input data), a synhronization barrier is required.3.2 Net Juggler ArhitetureNet Juggler arhiteture is organized as follow1:1UML diagrams done with dia www.lysator.liu.se/~alla/dia/

22 CHAPTER 3. DESIGN GUIDE
VRJuggler

vjKernel

vjInput

vjConfig

vjEnvironment

vjApp

NetJuggler

NetKernel

NetStreamInput

NetConfigManager NetStreamManager

«abstract»
NetAPI NetAPI_MPI

«global»
NetMessage

...

NetStreamConfig

The role of the di�erent modules is:� NetKernel is Net Juggler kernel. It derives from VR Juggler kernel (vjKernel).� NetConfigManager stores the luster on�guration and the pending hunks.� NetStreamManager is responsible for stream management.� NetInputStream gathers the lasses related to shared inputs, i.e. the lient and server versions of VRJuggler proxies.� NetConfigStream is in harge of:� the onnetion to VjControl ;� the stream of on�guration requests.� NetMessage ontains the lasses that de�ne the message objet.� NetAPI is an abstrat interfae de�ning the ommuniation primitives.

3.2. NET JUGGLER ARCHITECTURE 233.2.1 NetKernelUML Spei�ation
NetKernel

«singleton»
NetKernel

#netstreammanager: NetStreamManager*
#netconfigmanager: NetConfigManager*
#initConfig(): void
#controlLoop(): void
+loadconfigFile(file:std::string)
+checkForReconfig()

vjKernel

vjKernel

NetStreamManager

NetStreamManager

1

1
NetConfig

NetConfigManager

1

1

NetAPI

NetAPI

Desription� NetKernel : Modify the VR Juggler kernel.� netstreammanager: Pointer to the NetStreamManager initialized in the initConfig method.� netonfigmanager: Pointer to the NetConfigManager initialized in the initConfig method.� initConfig(): Overload the vjKernel funtion. Call vjKernel::initConfig() and initializesthe NetAPI, the NetStreamManager and the NetConfigManager.� ontrolLoop(): Main kernel loop. Similar to vjKernel::ontrolLoop(), but also ativate theNetStreamManager and the NetConfigManager.� loadConfigFile(): Overload the vjKernel method. Send pending on�guration hunks to theNetConfigManager.� hekForReonfig(): Overload the vjKernelmethod. Filter the pending reon�guration hunksprovided by NetConfigManager and then all the VR Juggler hekForReonfig() method.RemarksThe derivation of the vjKernel lass allows to add the funtionalities required by Net Juggler. This approahenfores modularity but requires the modi�ation of the vjKernel and the singleton system (see setion 4).The NetAPI an be seen as a manager. It is initialized and ontrolled by the NetKernel. It does notinterat diretly with other managers to respet the miro-kernel organization.

24 CHAPTER 3. DESIGN GUIDE3.2.2 NetCon�gManagerUML Spei�ation
NetConfigManager

«singleton»
NetConfigManager

vjConfig

vjConfigManager«protected»

Desription� NetConfigManager : Stores the urrent luster on�guration and the pending on�guration requests.
RemarksEah node must store the urrent luster on�guration to answer VjControl requests.NetConfigManager has the same methods than vjConfigManager but the former holds the luster on-�guration and the latter the loal node on�guration. NetConfigManager does not �lter the pending hunksnot to reate a dependene with the NetStreamManager, whih would be in opposition with the miro-kernelarhiteture. Filtering takes plae in the NetKernel:hekForReonfig() methods.

3.2. NET JUGGLER ARCHITECTURE 253.2.3 NetStreamManagerUML Spei�ation
NetAPI NetStreamManager

«singleton»
NetStreamManager

#list_stream: srd::vector<NetStream>
+init()
+close()
+setSource(id:int,s:NetSource*)
+addDest(id:int,d:NetDest*)
+removeSource(id:int,s:NetSource*)
+removeDest(id:int,d:NetDest)
+addStream(num:int,pc_origin:int,size_max:int)
+removeStream(num:int,size_max:int)
+shareData()
+recognizeStream(chunk:vjConfigChunk*): bool
+configStreamAdd(chunk:vjConfigChunk*,result:vjConfigChunkDB*)
+configStreamRemove(chunk:vjConfigChunk*,result:vjConfigChunkDB*)

NetAPI

NetStream
#source: NetSource*
#dest_list: std::vector<NetDest*>
#source_host: int
#id: int
#max_size: int
+id(): int
+NetStream(id:int,sh:int,size:int)
+addDest(d:NetDest*)
+removeDest(d:NetDest*)
+setSource(source:NetSource*=NULL)
+readMsg(m:NetMsg&)
+writeMsg(m:NetMsg&)
+hasSource()

 1

 * «abstract»
NetDest

#stream_id: int
+readMsg(m:NetMsg)
+init(stream_id:int)
+NetDest~(stream_id:int)

«abstract»
NetSource

#stream_id: int
+writeMsg(m:NetMsg&)
+init(stream_id:int)
+NetSource~(stream_id:int)

1

0..*1

0..1

«singleton»
NetStreamFactory

+registerStreamDriver()
+recognizeStream(chunk:vjConfigChunk*): bool
+createChunk(chunk:vjConfigChunk*,type:(ADD,REMOVE),result:vjConfigChunkDB*)

Desription� NetStreamFatory: Create Streams.� registerStream(): Reord a new stream.� reognizeStream(): Chek if a hunk orresponds to a stream.� reateChunk(): Create the needed hunks for adding or removing a stream.� NetStreamManager: Manage the streams.� list_stream: List of the streams used.� init(): Initialization.� lose(): Close the lass.� setSoure(): Set a stream soure node (overwrite the previous soure if already set).� addDest(): Add a destination node to a stream.� removeSoure(): Remove the stream soure node.

26 CHAPTER 3. DESIGN GUIDE� removeDest(): Remove a destination node to a stream.� addStream(): Add a new stream.� removeStream(): Remove a stream.� shareData(): For eah stream, the data written in the stream by the soure node are sent to thedestination nodes.� reognizeStream(): Chek if a stream is already reorded.� onfigStreamAdd(): Add a stream with addStream() and reate the assoiated hunks withreateChunk().� onfigStreamRemove(): Remove a stream with removeStream()and reate the assoiated hunkswith reateChunk().� NetStream: De�ne the stream objet.� soure: Soure objet (server) of the stream.� id: Stream id.� max_size: Stream max size.� soure_host: Rank of the soure node.� dest_list: List of destination objets (lients) of the stream.� id(): Return the stream id.� soureHost(): Return the rank of the soure node.� addDest(): Add a destination node to list_dest.� removeDest(): Remove a destination from list_dest.� hasSoure(): test if the stream soure is set.� setSoure(): Set the soure node of the stream.� writeMsg(): Write a message into the stream.� readMsg(): Read a message from the stream.� NetDest: Stream destination.� stream_id : Stream id.� readMsg(): Read a message from the stream.� init(): Initialization.� NetSoure: Stream soure.� stream_id: Stream id.� writeMsg(): Write a message into the stream.� init(): Initialization.RemarksThe lass NetStreamFatory is similar to a VR Juggler fatory.The NetStreamManagermanages streams and is also responsible for �ltering stream on�guration hunks.

3.2. NET JUGGLER ARCHITECTURE 273.2.4 NetInputSreamUML Spei�ation
NetStreamInput

«abstract»
vjServerProxy

+vjServerProxy()
+vjServerProxy~()
+config(c:vjConfigChunck*)

proxy:vjProxy*

«abstract»
vjClientProxy

+vjClientProxy()
+vjClientProxy~()
+config(c:vjConfigChunck*)

proxy:vjProxy*

vjServerAnalogProxy

+writeMsg(msg:NetMsg)

«lie»
vjAnalogProxy

...

«lie»

vjClientAnalogProxy

+readMsg(msg:NetMsg)

«lie»
vjAnalogProxy

...

«lie»

NetStreamManager

NetSource

NetDest

vjInput

vjProxy*

Desription� vjServerProxy: Conneted to an input devie driver like a vjProxy, but also responsible for writingthe retrieved data in an assoiated stream.� onfig(): Set the proxy.� vjClientProxy: Retrieve input devie data from a stream. The assoiated input devie driver runson a distant node. Its data are interepted and written in the stream by the vjServerProxy runningon the distant node.� onfig(): Set the proxy.� vjServerAnalogProxy: Example of a vjServerProxy instantiation.� writeMsg(): Write the data reeived from the input driver into the assoiated stream.� vjClientAnalogProxy() : Example of a vjClientProxy instantiation.� readMsg(): Read the data from the stream.RemarksThe vjServerProxy and vjClientProxy lasses are templates that an be used for any type of proxy(vjAnalogProxy in this example).

28 CHAPTER 3. DESIGN GUIDE3.2.5 NetCon�gStreamUML Spei�ation

NetConfigManager

NetConfigStream

vjClusterConnect
#buf: std::vector<vjConfigChunkDB*>
+config(chunk:vjConfigChunk*)
+writeMsg(m:NetMsg&)

NetStreamParser

+config(chunk:vjConfigChunk*)
+readMsg(m:NetMsg)

Environment

vjConnect

NetStreamManager

NetSource

NetDest

NetConfigManager

NetEnvironmentServer
#connections: std::vector<vjSharedConnect*>
#listen_thread: vjThread*
#port: int
#listen_socket: vjSocket*
#configured_to_accept: bool
#connections_mutex: vjMutex
+NetConnect()
+~NetConnect()
+writeMsg(m:Netmsg&): void
+config(chunk:vjConfigChunk*): bool
+isAccepting(): bool
+connectHasDied(con:vjSharedConnect*): void
+sendRefresh(): void
+configCanHandle(chunk:vjConfigChunk*): bool
+getChunkType(): std::string
#controlLoop(nullParam:void*): void
#getConnect(_name:const std::string&): vjSharedConnect*
#acceptConnections(): bool
#rejectConnections(): bool
#killConnections()
#removeConnect(con:vjSharedConnect*): void

 *

 1

Desription� vjClusterConnet: Manage the onnetion to VjControl for the luster on�guration.� buf: Bu�er ontaining the reeived pending requests.� onfig(): Initialize the onnetion.� writeMsg(): Write the pending requests in the on�guration stream.� NetConfigStreamParser: Reeive the pending on�guration requests and transmits them to NetConfigManager.� onfig(): Initialization.� readMsg(): Read the reeived the pending on�guration requests from the on�guration streamand forward them to NetConfigManager.

3.2. NET JUGGLER ARCHITECTURE 29� NetEnvironmentServer: Manage the list of onnetions and the assoiated sokets.� onnetions: List of onnetions.� listen_thread: Thread listening on onnetion port.� port: Port number.� listen_soket: Passive soket listening on port.� onfigured_to_aept: Boolean set to true if NetConnet an aept onnetions.� onnetions_mutex: Used to ontrol onurrent aesses.� writeMsg(): Call the method writeMsg() of eah vjClusterConnet.� onfig(): Con�guration.� is_Aepting(): Test if a onnetion is possible.� onnetHasDied(): Test if the onnetion is still ative.� sendRefresh(): Tell VjControl it should refresh its image of the luster on�guration.� onfigCanHandle(): Test if the hunk an be added to the list of humks to be proessed.� getChunkType(): Return hunk type.� ontrolLoop(): Control the thread main loop.� getConnet(): Return a onnetion.� aeptConnetions(): Test if onnetions an be aepted.� rejetConnetions(): Deny onnetions.� killConnetions(): Kill all onnetions.� removeConnet(): Remove a onnetion.�

30 CHAPTER 3. DESIGN GUIDE3.2.6 NetMessageUML Spei�ation
NetMessage

NetMsg
#buf_size: int
#buffer: byte*
#cur_size: int
#cur_pos: int
+NetMsg(size_init:int=256)
+read(dest:byte*,n:int): int
+write(src:byte*,n:int)
+getPos(): int
+seek(pos:int)
+getSize(): int
+getData(): byte*
+append(msg:NetMsg)

NetMsgList

+readMsg(dest:NetMsg&): bool
+writeMsg(src:NetMsg)
+fillsSize()

Desription� NetMsg: Message handling.� buf_size: Size of the bu�er ontaining the message.� buffer: Pointer to the bu�er.� ur_size: Current message size.� ur_pos: Current position in the bu�er.� read(): Read n bytes in the bu�er from ur_pos.� write(): Write n bytes in the bu�er from ur_pos and update ur_size.� getPos(): Return ur_pos.� seek(): Set ur_pos to a given position.� getSize(): Return ur_size.� getData(): Return the starting address of the message stored in the bu�er (usually the startingaddress of the bu�er).� append(): Append a given message at the end of the message already stored in the bu�er. Updateur_size and ur_pos aordingly.� NetMsgList: Higher level message handling methods.

3.2. NET JUGGLER ARCHITECTURE 31� readMsg(): Read the next message stored in the bu�er.� writeMsg(): Add a message in the bu�er.� fillSize(): Add a ghost message in the bu�er. This method is used for message padding.RemarksThe bu�er is the spae reserved to store a message. A message an be a onatenation of smaller messages.The methods of NetMsgList hides the details of reading and writing a message from a list (or onatenation)of messages.Message opies an signi�antly a�et ommuniation performane, in partiular for large messages (whatis onsidered large depends on the network). Spei� protools are developed to avoid messages reopies.Not to limit the bene�ts of suh protools, Net Juggler should also avoid message opies, even if messagesize is typially small (a few hundreds of Kbytes).3.2.7 NetAPIUML Spei�ation
NetAPI

«abstract singleton»
NetAPI

#nb: int
#rank: int
#gather_max_size: std::vector<int>
#gather_source: std::vector<int>
+init()
+close()
+initGather(gather_source:std::vector<int>,gather_max_size:std::vector<int>)
+allGather(msend:NetMsg,mrec:NetMsg&)
+broadcast(mrec:NetMsg&,source:int)
+recv(mrec:NetMsg&,source:int)
+send(msend:NetMsg,dest:int)
+barrier()
+bbHost(): int
+localRank(): int
+localName(): std::string
+getRank(name:std::string): int
+getName(rank:int): std::string

Desription� NetAPI: De�ne the network interfae used by NetJuggler� nb: Number of nodes.� rank: Node rank.� gather_max_size: Maximum size of the messages sent by the soures for the allgather.� gather_soure: Soure list for the allgather.� init(): Initialize the ommuniation API.� lose(): End.

32 CHAPTER 3. DESIGN GUIDE� initGather(): Set the soure nodes and the message maximum size parameters for the AllGather().� allGather(): Eah node reeives the message sent by eah soure node (equivalent to a gatherfollowed by a broadast).� broadast(): The soure node sends a message to eah other node.� rev(): Wait until a message is reeived from the soure node.� send(): Send a message to the destination node.� barrier(): Synhronization barrier between all nodes.� nbHost(): Return the number of nodes.� loalRank(): Return the loal node rank.� loalName(): Return the loal node name.� getRank(): Return the rank from a given node name.� getName(): Return the node name from a given node rank.RemarksSplitting the allgather in an initialization funtion InitGather and a ommuniation funtion AllGatherallows to avoid repeating unneessary initializations.The Init funtion may ontain the ode neessary to build a data base storing the orrespondenebetween node ranks and node names. This data base is then aessed using the getRank and getNamemethods.
3.3 Sequene DiagramsThis setion shows the alling order of the main Net Juggler methods.3.3.1 Data ExhangeThe main funtion of the appliation launhes InitConfig() that sets the NetAPI and the NetStreamManager.The NetStreamManager initializes the AllGather() parameters. At eah iteration of the main loop, the ker-nel alls the shareData() funtion that is divided in 3 steps. Eah soure node stores in a bu�er theonatenation of the messages to send. The allgather ommuniation takes plae. Eah destination nodereads the reeived data.

3.3. SEQUENCE DIAGRAMS 33
[NetKernel] [NetStreamManager] [NetAPI][NetSource] [NetDest]

init()

init()

initGather()

writeMsg()

AllGather()

shareData()

readMsg()

Main Loop

Main initConfig()

start()

3.3.2 Con�guration Chunk Handling
Before on�guration hunk are passed to VR Juggler, they pass through a on�guration �lter implemented inNetKernel::hekForReonfig. The �lter detets stream hunks and �lters out non loal hunks dependingon the host parameter. The following diagram shows the �lter main loop:

34 CHAPTER 3. DESIGN GUIDE
vjKernel NetConfigManager

checkForReconfig

getPendingEnd()

getPendingBegin()

Chunk Loop

NetKernel
[checkForReconfig]

Chunk processing
(see following diagrams)

For eah hunk proessed, 3 ases are possible. They are desribed in the following setions.
Stream Chunk ProessingStream hunks are assoiated to shared objets, for example a shared proxy. The on�guration �lter must�rst reognize this kind of hunk. The hunk is then passed to NetStreamManager to reate the streamand generate two hunks, one for the lient and one for the server. Theses hunks are added to the list ofhunks to be proessed. They are not diretly passed to VR Juggler as they may not be loal. For examplethe server is only instaniated on one host. The initial stream hunk is next added to the urrent lusteron�guration.

3.3. SEQUENCE DIAGRAMS 35
NetKernel

[filterChunk(c)] NetStreamManager

recognizeStream(c)

true

NetStreamFactory

recognizeStream(c)

true

configStreamAdd(c)

c1,c2

NetConfigManager

addActive(c)

createChunks(c,ADD)

c1,c2

addStream()

Add (c1,c2) to the list of chunks to be processed.
Mark them as not viewable in cluster active configuration.

Loal Chunk Proessing
To detet a loal hunk, the �lter uses the isLoal method, passing as argument the host parameter of thehunk. If the host parameter orresponds to "All" or to the loal host name, it is added to VR Juggler'svjConfigManager pending hunk list. It is also added to the urrent luster on�guration.

36 CHAPTER 3. DESIGN GUIDE
NetKernel

[filterChunk(c)] NetStreamManager

recognizeStream(c)

false

NetStreamManager

recognizeStream(c)

false

isLocal(c)

true

NetConfigManager

addActive(c)

vjConfigManager

addPending(c)

Non Loal Chunk ProessingA non loal hunks is a hunk that failed the preeding tests. If this hunk name also appears in the urrentloal VR Juggler on�guration, this means that it moved to a distant node. It must be removed from thethe loal VR Juggler on�guration. It is next added to the urrent luster on�guration.
NetKernel

[filterChunk(c)] NetStreamManager

recognizeStream(c)

false

NetStreamManager

recognizeStream(c)

false

isLocal(c)

false

NetConfigManager

addActive(c)

vjConfigManager

isChunkInActiveList(c)

true

removeActive(c)

Chapter 4Implementation Guide4.1 VR Juggler modi�ationsThe setion details the modi�ations VR Juggler requires to support Net Juggler. A path that shouldprevent you from doing it by hand is inluded in the Net Juggler distribution (see setion 1). These modi-�ations do not a�et the VR Juggler overall arhiteture. In the future, they may be diretly inluded inthe main VR Juggler distribution.4.1.1 Derived ClassesNet Juggler tries whenever possible to derive VR Juggler lasses instead of modifying diretly the VR Jugglerode. This requires the modi�ed methods to be delared virtual, whih is not always the ase (no one everthought that vjKernel::hekForReonfig ould be overloaded).The a�eted lasses are:� vjKernel� vj*Proxy� vjConnet4.1.2 Chunk Type Cheking in the vj*Proxy ClassThe vj*Proxy:onfigmethod heks Chunk types. Beause Net Juggler de�nes two new proxy types (lientproxy and server proxy), the test must be modi�ed aordingly. For example the vjAnalogProxy test mustbe modi�ed as:vjASSERT(((std::string)hunk->getType()) == "AnaProxy"|| ((std::string)hunk->getType()) == "AnaClientProxy"|| ((std::string)hunk->getType()) == "AnaServerProxy");4.1.3 VR Juggler 1.0 Related IssuesVR Juggler 1.0 implementation leads to ompilation problems when proxies and input devies are registeredexternally to VR Juggler. These problems are related to the template lasses vjDevieConstrutor andvjProxyConstrutor onstrutors that are de�ned in the .pp �les and not in the .h.To ompile Net Juggler you need to move the orresponding ode in the .h �les(Input/InputManager/vjProxyFatory.h and Input/InputManager/vjDevieFatory.h).The InputManager produes an error when a proxy is added without an attahed input devie. NetJuggler requires suh a possibility beause lient proxies are not attahed to an input devie. The meth-ods vjInputManager::add*Proxy in the Input/InputManager/InputManager.pp �le must be modi�ed toaept stupi�ed proxies. 37

38 CHAPTER 4. IMPLEMENTATION GUIDEOn Win32 systems, the vjTimeStamp lass is not implemented, hene Net Juggler timer an not work.You must add an empty diff method in vjTimeStampNone (�le Performane/vjTimeStampNone.h to beable to ompile://: returns 0.0inline float diff (onst vjTimeStampNone& t2) onst {return 0.0;}4.1.4 Calling a Derived Class ConstrutorWe desribe the method we hose to all a derived lass onstrutor without expliitly alling it to improveode modularity. For sake of larity we onentrate on Net Juggler kernel reation, but this method alsoapplies to other lasses, for example the NetAPI and NetAPI_MPI lasses.The vjKernel lass is alled a "singleton" beause only one instane of that lass an be reated. This isahieved by hiding the all to the onstrutor in a intanemethod. This method reates the kernel instaneif it does not already exist, and returns the instane address.Beause a VR Juggler appliation needs a pointer to the kernel instane it has a pointer to the kernelinitialized with the instane method:vjKernel* kernel = vjKernel::instane();On a Net Juggler luster, an instane of the NetKernel is required instead. A solution would be tomodify eah appliation to all the instane method of the NetKernel lass:vjKernel* kernel = NetKernel::instane();To avoid suh a modi�ation, we take advantage of the singleton system and modify its implementation(see Utils/vjSingleton.h for VR Juggler original singleton implementation and below page 38 for themodi�ed version). The idea is the following: instead of alling the vjKernel onstrutor, the methodinstane uses a pointer sInstaneConstrutor to an ative onstrutor. This pointer points to vjKernel'sonstrutor if the vjKernel lass is not derived, and to NetKernel's onstrutor if NetKernel derives fromvjKernel.The NetKernel lass is a "derived singleton". It has a spei� instane method to set thesInstaneConstrutor base pointer. Beause the sInstaneConstrutor pointer must be set before theinstane of NetKernel is reated, the NetKernel lass has a stati variable isRegistered. This variableinitialization hanges the onstrutor pointed by sInstaneConstrutor.Singletons are used for other lasses, like vjDevieFatory, so it is important that our implementationstay ompatible with VR Juggler singleton system: if no derived lass is provided the sInstaneConstrutorshould point to the base onstrutor. For that goal, vjKernel initializes the stati variablesInstaneConstrutor with vjKernel's onstrutor.We now have to make sure that isRegistered is initialized after sInstaneConstrutor to setsInstaneConstrutor to the expeted onstrutor if a derived lass is provided. We fore a proper orderby initializing sInstaneConstrutor with a pointer assignment while isRegistered is initialized with afuntion all. Compilers �rst initialize simple variables, for example those without onstrutors or funtionalls, and then omplex ones. All ompilers we are working with respet this initialization order, but othersmay not. Please ontat us if you enounter suh a situation.We also de�ned an "abstrat singleton". An abstrat singleton di�ers from a normal singleton beauseit an not be instantiated if no not-abstrat derived lass is de�ned (see page 38). The abstrat singleton isrequired by NetAPI, the Net Juggler lass de�ning the network interfae.#define vjSingletonHeader(TYPE) \proteted: \typedef TYPE *vjSingletonPtr; \typedef TYPE vjSingletonBase; \typedef vjSingletonPtr vjSingletonConstrutor(); \stati vjSingletonConstrutor *sInstaneConstrutor; \stati vjSingletonPtr onstrutor(void); \

4.1. VR JUGGLER MODIFICATIONS 39publi: \stati TYPE* instane(void)#define vjDerivedSingletonHeader(TYPE) \proteted: \stati vjSingletonPtr onstrutor(); \stati bool registerSingleton(); \stati bool isRegistered; \publi: \stati TYPE* instane(void)#define vjAbstratSingletonHeader(TYPE) \proteted: \typedef TYPE *vjSingletonPtr; \typedef TYPE vjSingletonBase; \typedef vjSingletonPtr vjSingletonConstrutor(); \stati vjSingletonConstrutor *sInstaneConstrutor; \publi: \stati TYPE* instane(void)#define vjSingletonImp(TYPE) \TYPE::vjSingletonConstrutor *TYPE::sInstaneConstrutor=TYPE::onstrutor; \TYPE::vjSingletonPtr TYPE::onstrutor(void) \{ return new TYPE; } \TYPE* TYPE::instane(void) \{ \stati vjMutex singleton_lok1; \stati TYPE* the_instane1 = NULL; \\if (the_instane1 == NULL) \{ \vjGuard<vjMutex> guard(singleton_lok1); \if (the_instane1 == NULL) \/*{ the_instane1 = new TYPE; }*/ \{ the_instane1 = sInstaneConstrutor(); } \} \return the_instane1; \}#define vjAbstratSingletonImp(TYPE) \TYPE::vjSingletonConstrutor *TYPE::sInstaneConstrutor=NULL; \TYPE* TYPE::instane(void) \{ \stati vjMutex singleton_lok1; \stati TYPE* the_instane1 = NULL; \\if (the_instane1 == NULL) \{ \vjGuard<vjMutex> guard(singleton_lok1); \if (the_instane1 == NULL) \/*{ the_instane1 = new TYPE; }*/ \{ the_instane1 = sInstaneConstrutor(); } \} \return the_instane1; \}#define vjDerivedSingletonImp(TYPE) \TYPE::vjSingletonPtr TYPE::onstrutor(void) \{ return new TYPE; } \bool TYPE::registerSingleton() \{ \printf("registering singleton " #TYPE "\n"); \sInstaneConstrutor=TYPE::onstrutor; \return true; \} \bool TYPE::isRegistered=TYPE::registerSingleton(); \TYPE* TYPE::instane(void) \{ \return stati_ast<TYPE*>(vjSingletonBase::instane()); \}4.1.5 Swaplok SupportFor a proper display synhronization, all nodes should synhronize to swap their frame bu�ers (swaplok).VR Juggler does not inlude any swaplok support. It assumes that the underlying system is responsible forswapping synhronization. This is for example the ase on an SGI Onyx system. Net Juggler is aimed at

40 CHAPTER 4. IMPLEMENTATION GUIDErunning VR appliations on mahines built of ommodity omponents that usually do not support swaplok.So Net Juggler inludes a software swaplok support.VR Juggler rendering ours as follow:drawmanager->draw(); // start drawingdrawmanager->syn(); // wait until frame is displayed on// sreenFor swaploking we use a synhronization barrier that fores the di�erent nodes to wait eah other beforeto swap their frame bu�ers. This synhronization barrier is preeded by a all to swapReady and followedby a all to swap, two methods that were added to the drawmanager lass. The sequene of alls in theNetKernel main loop is the following:drawmanager->draw(); // start drawingdrawmanager->swapReady(); // wait until rendering is finished// and frame is ready to be displayednetapi->barrier(); // synhronization with other nodes// (swaplok)drawmanager->swap(); // display frame on sreendrawmanager->syn(); // wait until frame is displayed on// sreenFor OpenGL, swapReady() is based on a all to glFinish().Swaplok for Performer is not yet supported.4.2 Communiation LibraryBeause we assume the ommuniation library used may not be thread safe, alls to the NetAPI are allperformed by the same thread (the kernel thread).4.2.1 MPIThread SafeMPI implementations are not neessarily thread safe.Colletive Communiation ImplementationDepending on your MPI implementation, olletive operations may not be optimized for Net Juggler ommu-niation requirements. For example the allgather operation is typially implemented by having all proessorsshifting messages in a ring. This is e�ient for large messages, but for small messages a gather followed bya broadast is generally more e�ient.The NetAPI_MPI lass ontains onstants that are used to selet between di�erent implementations (seeNetAPI_MPI/NetAPI_MPI.h):� NETAPI_MPI_BROADCAST: If set to 1 the NetAPI_MPI:allGathermethod is implemented with the MPImpi_bast funtion.� NETAPI_MPI_BARRIER: If set to 1 the NetAPI_MPI:allGather method is implemented with the MPImpi_barrier funtion.� NETAPI_MPI_ALLGATHER: If set to 1 the NetAPI_MPI:allGathermethod is implemented with the MPImpi_allgather funtion.By default all theses onstant are set to 1. Refer to the ode of the NetAPI_MPI lass to know the otherimplementations available. By hanging the onstant values you an selet di�erent implementations. Thenetapi_mpi_test program an be used to measure performanes.

Appendix AGenlok and Ative StereoA.1 IntrodutionHigh quality image projetions and ative stereo rendering in multi-display environments require genlokingvideo signals, i.e. a video retrae synhronization. Exept for some high end ards, o�-the-shelf graphisards do not support genlok. This is an important limitation for virtual reality PC lusters.We desribe in this setion the SoftGenLok library. It provides software support for multi-displaygenloking. The library also enables quad bu�er page �ipped stereo that today's graphis ard driversgenerally do not support.The assoiation of Net Juggler and SoftGenLok makes possible to run a virtual reality appliation withative stereo and multi displays on a PC luster.For the moment, SoftGenLok is developed only for Linux and supports NVIDIA graphis ards.A.2 Genloking Video SignalsA.2.1 AlgorithmWhen a node detets the vertial retrae for its video ards, it starts a synhronization barrier and measuresthe time taken to proeed this barrier. If the delay is onsidered too long the mahine slows down its videoretraes. When the delay is onsidered small enough video retrae goes bak to its normal speed. Thealgorithm is desribed bellow:wait = falseLoop:Wait for vertial retraeBarriert = barrier exeution timeIf (t > time to retrae one image) thendisplay (``IMAGE LOST'')elseif (t > too_long and wait == false) thenSlow down video signalwait = trueendif (t < small_enough and wait == true) thenGo bak to normal signal speedwait = falseendendend 41

42 APPENDIX A. GENLOCK AND ACTIVE STEREOA.2.2 Setting Time ParametersThe algorithm requires the following data:� The time syn_time required to exeute a barrier when all barrier alls are synhronized.� The extra time delay introdued during one image retrae when the signal is slowed down.The highest quality genlok is ahieved by setting the variables small_enough to syn_time and too_longto syn_time+delay.Ative stereo does not require a perfet genlok. The signals should stay synhronized within a rangethat ensures the shutters �ip without an eye see the wrong image. This range depends on the shutter latenyand the time the order to �ip shutters is sent.A.2.3 Synhronization BarrierThe performane of the synhronization barrier is very important as it establishes the genlok quality. Videosignals an not be synhronized with a preision inferior to syn_time.We obtained good results with a Myrinet Network were 4 PCs an be synhronized in about 30 mi-roseonds. We also developed a dediated synhronization network for swaplok and genlok based on aTTL_PAPERS network (see www.aggregate.org). The synhronization requires less than 5 miroseondsallowing a very preise genlok.A.2.4 Video Signal AessTo implement this algorithm requires to know how to detet the vertial retrae (VR) and how to slow downthe video signal. There is no standard funtions.Several approahes were onsidered:� The X Synhronize extension. It provides timers synhronized with the retrae. Unfortunately XFree86implementation do not support these timers.� The XF86DGA implementation. It allows to modify the sreen area displayed in synhronization withthe retrae. It ould be used to detet the vertial retrae and to selet the image displayed (for stereo).But this extension appeared not to be ompatible with OpenGL programs and do not allow to slowdown the signal.� The XF86VidMode extension. It allows to modify display parameters. But this extension do notpermit to detet the vertial retrae. Moreover, the NVIDIA driver implementation ignores the ordersto slow down the signal. A modi�ation of the parameters initializes the video signal and restarts itwith delay we were not able to ontrol.� The XFree86 server and the assoiated graphis ard driver. NVIDIA driver soure odes are notavailable.� Haking the graphis ard registers. Most graphis ards are VGA ompatible, having a status registerand CRTC registers. The status register an be used to detet the vertial retrae. The CRTC registersan be used to modify the video signal. However, we experiened register orruption problems whenaessing the registers onurrently with the drivers.SoftGenLok is based on the last approah. By aessing registers just before the vertial retrae, registerorruption almost never our. A more reliable solution for the issue is also urrently studied.

A.3. ACTIVE STEREO SUPPORT 43A.2.5 Vertial Retrae WaitingBeause we do not have aess to the vertial retrae interrupt, other approahes to detet and wait for thevertial retrae must be onsidered.We use the graphis ard status register to detet the vertial retrae. We an poll the state of thisregister, but this ative waiting is CPU time onsuming. To free the CPU, we use a real-time timer thatis started after eah vertial retrae. It is set up to wake up the SoftGenLok thread just before the nextvertial retrae.We use the RT-Linux system (see www.rtlinux.org). The high preision of RT-Linux timers permits toredue the ative waiting to a few tens of miroseonds for eah retrae.Note that this overhead ould be redue by dynamially re�ning the SoftGenLok thread sleeping time.A.3 Ative Stereo SupportAtive stereo display requires the graphis ard to ompute two di�erent images, one for eah eye, and todisplay them alternatively swithing at eah video retrae. Shutter glasses are synhronized with the retraesignal to ensure eah eye only sees its image.XFree86 is set up to have a virtual bu�er twie as high as the the sreen display. The 3D software(NET/VR Juggler) must then be set up to write the left eye image in the top half bu�er and the right eyeimage in the down half bu�er. Next, eah time a vertial retrae is deteted the displayed part of the bu�eris hanged and a signal is sent to the shutter glasses.To alternate the image displayed, SoftGenLok modi�es the display start address in the CRTC registers.To send the stereo syn signal to shutter glasses we tested two solutions, depending on how shutter glassesare onneted to the PC:� The signal is written to a parallel port register. Generally shutter glasses are not onneted to theparallel port but it is easy to brew a home made adaptor.� The stereo signal is written to the DDC SDA pin of the SVGA video port. For NVIDIA ards theDDC bit is set by writing into the CRTC register 0x3f. A stereo enabler adaptor is then neessaryto extrat the signal and forward it to the glasses. Using the ELSA Revelator stereo enabler adaptorallows to onnet any glasses that has a VESA standard 3-pin mini-DIN stereo onnetor.One alls for stereo display are added to SoftGenLok the main algorithm beomes the following:wait = falseframe = 0Loop:Wait for vertial retraeBarriert = barrier exeution timeset_display_starting address((frame \% 2) * image_size)set_stereo_syn_signal ((frame \% 2) ? right_eye : left_eye)frame = frame + 1If (t > time to retrae one image) thendisplay (``IMAGE LOST'')elseif (t > too_long and wait == false) thenSlow down video signalwait = trueendif (t < small_enough and wait == true) thenGo bak to normal signal speedwait = falseend

44 APPENDIX A. GENLOCK AND ACTIVE STEREOendend

